Battery state estimation (BSE) is one of the most important design aspects of an electrified propulsion system. It includes important functions such as state-of-charge estimation which is essentially for the energy management system. A successful and practical approach to battery state estimation is via real time battery model parameter identification. In this approach, a low-order control-oriented model is used to approximate the battery dynamics. Then a recursive least squares is used to identify the model parameters in real time. Despite its good properties, this approach can fail to identify the optimal model parameters if the underlying system contains time constants that are very far apart in terms of time-scale. Unfortunately this is the case for typical lithium-ion batteries especially at lower temperatures. In this paper, a modified battery model parameter identification method is proposed where the slower and faster battery dynamics are identified separately. The battery impedance information is used to guide how to separate the slower and faster dynamics, though not used specifically in the identification algorithm. This modified algorithm is still based on least squares and can be implemented in real time using recursive least squares. Laboratory data is used to demonstrate the validity of this method.
- Dynamic Systems and Control Division
Real-Time Battery Model Identification Using a Two Time-Scaled Approach
Hu, Y, & Wang, Y. "Real-Time Battery Model Identification Using a Two Time-Scaled Approach." Proceedings of the ASME 2013 Dynamic Systems and Control Conference. Volume 3: Nonlinear Estimation and Control; Optimization and Optimal Control; Piezoelectric Actuation and Nanoscale Control; Robotics and Manipulators; Sensing; System Identification (Estimation for Automotive Applications, Modeling, Therapeutic Control in Bio-Systems); Variable Structure/Sliding-Mode Control; Vehicles and Human Robotics; Vehicle Dynamics and Control; Vehicle Path Planning and Collision Avoidance; Vibrational and Mechanical Systems; Wind Energy Systems and Control. Palo Alto, California, USA. October 21–23, 2013. V003T41A002. ASME. https://doi.org/10.1115/DSCC2013-3776
Download citation file: