In the design of vehicle stability control (VSC) systems for ground vehicles, sideslip angle plays a vital role and its estimation has long been an active research topic. Accurate estimation of sideslip angle is more difficult for lightweight vehicles (LWVs) because their parameters are prone to significant changes with loading conditions — the amount and position of the payload. In this paper, a robust sideslip angle estimator based on a recently emerging smooth variable structure filter (SVSF) is presented. This sideslip angle estimator is suitable for LWVs because it is almost non-sensitive to the changes of the system parameters. A four-state vehicle lateral dynamic model including a pseudo-Burckhardt tire model is employed in the filter design. Compared with the widely utilized extended Kalman filter (EKF), the SVSF shows much better robustness against modeling errors. It is also more favorable in terms of tuning effort and computational speed. Simulation studies were conducted based on a high-fidelity vehicle model in CarSim®, where the vehicle took the form of a lightweight electric ground vehicle with independent in-wheel motors. The performance of the SVSF was shown by comparisons against the EKF under different settings for model parameters.

This content is only available via PDF.
You do not currently have access to this content.