Traditional kinematic analysis of manipulators, built upon a deterministic articulated kinematic modeling often proves inadequate to capture uncertainties affecting the performance of the real robotic systems. While a probabilistic framework is necessary to characterize the system response variability, the random variable/vector based approaches are unable to effectively and efficiently characterize the system response uncertainties. Hence in this paper, we propose a random matrix formulation for the Jacobian matrix of a robotic system. It facilitates characterization of the uncertainty model using limited system information in addition to taking into account the structural inter-dependencies and kinematic complexity of the manipulator. The random Jacobian matrix is modeled such that it adopts a symmetric positive definite random perturbation matrix. The maximum entropy principle permits characterization of this perturbation matrix in the form of a Wishart distribution with specific parameters. Comparing to the random variable/vector based schemes, the benefits now include: incorporating the kinematic configuration and complexity in the probabilistic formulation, achieving the uncertainty model using limited system information (mean and dispersion parameter), and realizing a faster simulation process. A case study of a 6R serial manipulator (PUMA 560) is presented to highlight the critical aspects of the process. A Monte Carlo analysis is performed to capture the deviations of distal path from the desired trajectory and the statistical analysis on the realizations of the end effector position and orientation shows how the uncertainty propagates throughout the system.

This content is only available via PDF.
You do not currently have access to this content.