Some manipulation tasks have directions of end-effector acceleration of a manipulator and directions for which dynamic accuracy is required in the motion. This paper proposes an index (DAIT: Dynamic Accuracy Index for Task-directions) that allows us to evaluate the dynamic accuracy of manipulators considering the task-directions. Firstly, we derive the DAIT. Secondly, we evaluate some postures of a 2-degrees of freedom (DOF) planar manipulator on the basis of some indices that have been proposed (condition number, dynamic manipulability measure and task compatibility) and the DAIT, respectively. Thirdly, we show a manipulator’s design example based on the DAIT. Finally, from the evaluation and design results, we discuss the usefulness of the DAIT in determining the suitable postures of the manipulator for a given task and in designing the suitable manipulators for a given task.
- Dynamic Systems and Control Division
Evaluation and Design of Manipulators Based on a Dynamic Accuracy Index Considering Task-Directions
Kai, Y. "Evaluation and Design of Manipulators Based on a Dynamic Accuracy Index Considering Task-Directions." Proceedings of the ASME 2013 Dynamic Systems and Control Conference. Volume 3: Nonlinear Estimation and Control; Optimization and Optimal Control; Piezoelectric Actuation and Nanoscale Control; Robotics and Manipulators; Sensing; System Identification (Estimation for Automotive Applications, Modeling, Therapeutic Control in Bio-Systems); Variable Structure/Sliding-Mode Control; Vehicles and Human Robotics; Vehicle Dynamics and Control; Vehicle Path Planning and Collision Avoidance; Vibrational and Mechanical Systems; Wind Energy Systems and Control. Palo Alto, California, USA. October 21–23, 2013. V003T38A002. ASME. https://doi.org/10.1115/DSCC2013-3805
Download citation file: