We present a novel mechanical system, the “landfish,” which takes advantage of a combination of articulation and a nonholonomic constraint to exhibit fishlike locomotion. We apply geometric mechanics techniques to establish the equations of motion in terms of the system’s nonholonomic momentum and analyze the system’s equilibrium properties. Finally, we demonstrate its locomotion capabilities under several controllers, including heading and joint velocity control.

This content is only available via PDF.
You do not currently have access to this content.