In this paper, we develop a coordination control technique for a group of agents described by a general class of underactuated dynamics. The objective is for the agents to reach and maintain a desired formation characterized by steady-state distances between the neighboring agents. We use graph theoretic notions to characterize communication topology in the network determined by the information flow directions and captured by the graph Laplacian matrix. Furthermore, using sliding mode control approach, we design decentralized controllers for individual agents that use only data from the neighboring agents which directly communicate their state information to the current agent in order to drive the current agent to the desired steady state. Finally, we show the efficacy of our theoretical results on the example of a system of wheeled mobile robots that reach and maintain the desired formation.
- Dynamic Systems and Control Division
Sliding Mode Coordination Control Design for Multiagent Systems
Ghasemi, M, & Nersesov, SG. "Sliding Mode Coordination Control Design for Multiagent Systems." Proceedings of the ASME 2013 Dynamic Systems and Control Conference. Volume 2: Control, Monitoring, and Energy Harvesting of Vibratory Systems; Cooperative and Networked Control; Delay Systems; Dynamical Modeling and Diagnostics in Biomedical Systems; Estimation and Id of Energy Systems; Fault Detection; Flow and Thermal Systems; Haptics and Hand Motion; Human Assistive Systems and Wearable Robots; Instrumentation and Characterization in Bio-Systems; Intelligent Transportation Systems; Linear Systems and Robust Control; Marine Vehicles; Nonholonomic Systems. Palo Alto, California, USA. October 21–23, 2013. V002T33A003. ASME. https://doi.org/10.1115/DSCC2013-3902
Download citation file: