Gliding robotic fish is a new type of underwater robots that combines the energy-efficiency of underwater gliders and the high maneuverability of robotic fish. The tail fin of a gliding robotic fish provides the robot more control authority, especially for the lateral motion, compared with traditional underwater gliders. In this paper, the design and development of a gliding robotic fish prototype is first presented, followed by its dynamic model. We then focus on the problem of tail-enabled yaw stabilization during gliding, where a sliding mode controller is proposed. Both simulation and experimental results are demonstrated to validate the effectiveness of the proposed controller.

This content is only available via PDF.
You do not currently have access to this content.