Gliding robotic fish is a new type of underwater robots that combines the energy-efficiency of underwater gliders and the high maneuverability of robotic fish. The tail fin of a gliding robotic fish provides the robot more control authority, especially for the lateral motion, compared with traditional underwater gliders. In this paper, the design and development of a gliding robotic fish prototype is first presented, followed by its dynamic model. We then focus on the problem of tail-enabled yaw stabilization during gliding, where a sliding mode controller is proposed. Both simulation and experimental results are demonstrated to validate the effectiveness of the proposed controller.
Volume Subject Area:
Marine Vehicles
This content is only available via PDF.
Copyright © 2013 by ASME
You do not currently have access to this content.