When a continuous-time linear system is discretized using a hold, stability of poles are preserved. However, the transformations of zeros are much more complicated and the number of the zeros increases in some cases in the discretization process. This paper is concerned with the zeros of a sampled-data model resulting from a continuous-time multivariable system which is not decouplable by static state feedback and has all of the relative degrees one. Two cases of a zero-order hold and a fractional-order hold are treated. An approximate expression of the zeros is given as power series expansions with respect to a sampling period in the zero-order hold case. Further, the limiting zeros are analyzed in the fractional-order hold case. Then, the advantage of the fractional-order hold to the zero-order hold is discussed from the viewpoint of stability of the zeros.
- Dynamic Systems and Control Division
Asymptotic Properties of Zeros of Sampled-Data Systems for Continuous-Time Plants With Nondecouplability
Ishitobi, M, & Kunimatsu, S. "Asymptotic Properties of Zeros of Sampled-Data Systems for Continuous-Time Plants With Nondecouplability." Proceedings of the ASME 2013 Dynamic Systems and Control Conference. Volume 2: Control, Monitoring, and Energy Harvesting of Vibratory Systems; Cooperative and Networked Control; Delay Systems; Dynamical Modeling and Diagnostics in Biomedical Systems; Estimation and Id of Energy Systems; Fault Detection; Flow and Thermal Systems; Haptics and Hand Motion; Human Assistive Systems and Wearable Robots; Instrumentation and Characterization in Bio-Systems; Intelligent Transportation Systems; Linear Systems and Robust Control; Marine Vehicles; Nonholonomic Systems. Palo Alto, California, USA. October 21–23, 2013. V002T31A005. ASME. https://doi.org/10.1115/DSCC2013-3989
Download citation file:
- Ris (Zotero)
- Reference Manager
- EasyBib
- Bookends
- Mendeley
- Papers
- EndNote
- RefWorks
- BibTex
- ProCite
- Medlars
Close