This paper further studies the analysis and control problems of continuous-time switched linear systems subject to actuator saturation. Using the norm-bounded differential inclusion (NDI) description of the saturated systems and the minimal switching rule, a set of switched output feedback controllers is designed to minimize the disturbance attenuation level defined by the regional ℒ2 gain over a class of energy-bounded disturbances. The synthesis conditions are expressed as bilinear matrix inequalities (BMIs) and can be solved by numerical search coupled with linear matrix inequality (LMI) optimization. Compared to the previous method based on polytopic differential inclusion (PDI), the proposed approach has good scalability and potentially renders better performance. Numerical examples are provided to verify effectiveness of the proposed approach.

This content is only available via PDF.
You do not currently have access to this content.