This paper presents a reconfigurable control design technique that integrates a robust feedback and an iterative learning control (ILC) scheme. This technique is applied to develop vehicle control systems that are tolerant to failures due to malfunctions or damages. The design procedure includes solving the robust performance condition for a feedback controller through the use of μ-synthesis that also satisfies the convergence condition for the iterative learning control rule. The effectiveness of the proposed approach is verified by simulation experiments using a radio-controlled (R/C) model airplane. The methods presented in this paper can be applied to design of global intelligent control systems to improve the operating characteristics of a vehicle and increase safety and reliability.

This content is only available via PDF.
You do not currently have access to this content.