HAPTIC PONG is a force-feedback version of the classic arcade game “Pong”, conceived as an educational game that can teach physics and controls concepts to high school students. Our design incorporates two identical linear one-degree-of-freedom haptic paddles, each with a four-bar linkage transforming motor rotation to linear motion. Virtual environments were designed to incorporate dynamic systems describing the force-displacement relationships of each paddle. At a demonstration with 50 high school students, a prototype of the device was rated as both educational and fun to use. After the initial proof of concept, a design optimization study was conducted to improve the kinematic performance of the linear haptic devices based on the device constraints for the application. Optimization considered both the linearity of the coupler point and Jacobian minimum singular value. While maintaining a satisfactory level of linearity, the optimized linkage lengths produced an estimated 160% improvement in the maximum consistent force output.
- Dynamic Systems and Control Division
A Haptic System for Educational Games: Design and Application-Specific Kinematic Optimization
Kessler, JA, Lovelace, RC, & Okamura, AM. "A Haptic System for Educational Games: Design and Application-Specific Kinematic Optimization." Proceedings of the ASME 2013 Dynamic Systems and Control Conference. Volume 2: Control, Monitoring, and Energy Harvesting of Vibratory Systems; Cooperative and Networked Control; Delay Systems; Dynamical Modeling and Diagnostics in Biomedical Systems; Estimation and Id of Energy Systems; Fault Detection; Flow and Thermal Systems; Haptics and Hand Motion; Human Assistive Systems and Wearable Robots; Instrumentation and Characterization in Bio-Systems; Intelligent Transportation Systems; Linear Systems and Robust Control; Marine Vehicles; Nonholonomic Systems. Palo Alto, California, USA. October 21–23, 2013. V002T26A006. ASME. https://doi.org/10.1115/DSCC2013-4077
Download citation file: