Communication between specialized regions of the brain is a dynamic process allowing for different connections to accomplish different tasks. While the content of interregional communication is complex, the pattern of connectivity (i.e., which regions communicate) may lie in a lower dimensional state-space. In epilepsy, seizures elicit changes in connectivity, whose patterns shed insight into the nature of seizures and the seizure focus. We investigated connectivity in 3 patients by applying network-based analysis on multi-day subdural electrocorticographic recordings (ECoG). We found that (i) the network connectivity defines a finite set of brain states, (ii) seizures are characterized by a consistent progression of states, and (iii) the focus is isolated from surrounding regions at the seizure onset and becomes most connected in the network towards seizure termination. Our results suggest that a finite-dimensional state-space model may characterize the dynamics of the epileptic brain, and may ultimately be used to localize seizure foci.
- Dynamic Systems and Control Division
State Dynamics of the Epileptic Brain
Burns, SP, Santaniello, S, Anderson, WS, & Sarma, SV. "State Dynamics of the Epileptic Brain." Proceedings of the ASME 2013 Dynamic Systems and Control Conference. Volume 2: Control, Monitoring, and Energy Harvesting of Vibratory Systems; Cooperative and Networked Control; Delay Systems; Dynamical Modeling and Diagnostics in Biomedical Systems; Estimation and Id of Energy Systems; Fault Detection; Flow and Thermal Systems; Haptics and Hand Motion; Human Assistive Systems and Wearable Robots; Instrumentation and Characterization in Bio-Systems; Intelligent Transportation Systems; Linear Systems and Robust Control; Marine Vehicles; Nonholonomic Systems. Palo Alto, California, USA. October 21–23, 2013. V002T22A001. ASME. https://doi.org/10.1115/DSCC2013-3708
Download citation file: