Various models have been proposed to estimate the undeformed thickness of chips produced by a CNC milling tool, in order to calculate the forces acting on the tool. The choice of model significantly affects the simulated dynamics of the tool, thereby affecting the dynamic stability of the simulated process and whether or not chatter occurs in a given cutting scenario. Simulations of the dynamics of the milling process can be used to determine the conditions at which chatter occurs, which can lead to poor surface finish and tool damage. The dynamics of a traditional model and a more detailed numerical model are simulated here with particular emphasis on the differences in their chatter bifurcation points. High-speed, low-radial-immersion milling processes are simulated because of their application in industrial high-precision machining.

This content is only available via PDF.
You do not currently have access to this content.