Ocean wave energy is an indirect form of solar energy with great potential worldwide. Technologies on extracting energy from the ocean wave have been explored for centuries and are still undergoing with challenges. The nature of ocean wave and ocean wave energy are introduced with their mathematical models in this paper. The features and working principles of three forms of mainstream ocean wave energy converters (OWEC), including floating bodies (point absorber, attenuator, and terminator), oscillating water column (OWC) and wave overtopping, are presented together with their hydrodynamic performances. The corresponding control methodologies for these ocean wave energy converters, such as latching control, declutch control, reactive control, model predictive control (MPC), etc., are analyzed in a comprehensive manner thereafter. Optimal conditions for maximum power absorption are also introduced with mathematical modeling and derivations.
- Dynamic Systems and Control Division
Ocean Wave Energy Converters and Control Methodologies
Xie, J, & Zuo, L. "Ocean Wave Energy Converters and Control Methodologies." Proceedings of the ASME 2013 Dynamic Systems and Control Conference. Volume 2: Control, Monitoring, and Energy Harvesting of Vibratory Systems; Cooperative and Networked Control; Delay Systems; Dynamical Modeling and Diagnostics in Biomedical Systems; Estimation and Id of Energy Systems; Fault Detection; Flow and Thermal Systems; Haptics and Hand Motion; Human Assistive Systems and Wearable Robots; Instrumentation and Characterization in Bio-Systems; Intelligent Transportation Systems; Linear Systems and Robust Control; Marine Vehicles; Nonholonomic Systems. Palo Alto, California, USA. October 21–23, 2013. V002T19A001. ASME. https://doi.org/10.1115/DSCC2013-3757
Download citation file: