With the introduction and development of Anti-lock Braking System in modern vehicles, remarkable progress in brake efficiency and brake stability has been achieved. However, it is a significant challenge to deal with the control law in certain critical situations, especially on split-μ road surface. In low vehicle velocity, as some standards and regulations specified, the stability in such situation is comparably easy to be achieved. But with the vehicle velocity increasing, the driver behavior contributes a large impact on the trajectory maintenance and easily causes sympathetic vibration of the vehicle because of the unexpected synchronization between the driver input and control law output, which could be very dangerous. This paper presents the research work in vehicle stability control when Anti-lock Braking System is activated at split-μ road surface. The principal contribution of this work is that the driver behavior is taken into account and the control law is tuned to adapt to this situation, which effectively maintains the stability of the vehicle without compromising the brake efficiency.

This content is only available via PDF.
You do not currently have access to this content.