In this paper, a discrete-time electronic throttle model was developed based upon the parameters obtained through system identification. To design gain-scheduling controllers using LPV (linear parameter varying) scheme, the throttle was modeled as an LPV system, where the vehicle battery voltage and the non-linear friction coefficient are the measurable time-varying parameters. Gain-scheduling H 2 controller was designed for the LPV throttle system using the linear matrix inequality (LMI) convex optimization approach. The designed controller is validated through simulations and show that the proposed controller provides improved performance over the baseline fixed gain controller.

This content is only available via PDF.
You do not currently have access to this content.