Variable-gear-ratio steering is an advanced feature in automotive vehicles. As the name suggest, it changes the steering gear ratio depending on the speed of the vehicle. This feature can simplify steering for the driver, which leads to various advantages, such as improved vehicle comfort, stability, and safety. One serious problem, however, is that the variable-gear-ratio system generates unnatural torque to the driver whenever the variable-gear-ratio control is activated. Such unnatural torque includes both low-frequency and steering-speed-dependent components. This paper proposes a control method to cancel this unnatural torque. We address the problem by using a tire sensor and a set of feedback and feedforward algorithms. Effectiveness of the proposed method is experimentally verified using a hardware-in-the-loop experimental setup. Stability and robustness under model uncertainties are evaluated.
- Dynamic Systems and Control Division
Control Design for Cancellation of Unnatural Reaction Torque and Vibrations in Variable-Gear-Ratio Steering System
Oshima, A, Chen, X, Sugita, S, & Tomizuka, M. "Control Design for Cancellation of Unnatural Reaction Torque and Vibrations in Variable-Gear-Ratio Steering System." Proceedings of the ASME 2013 Dynamic Systems and Control Conference. Volume 1: Aerial Vehicles; Aerospace Control; Alternative Energy; Automotive Control Systems; Battery Systems; Beams and Flexible Structures; Biologically-Inspired Control and its Applications; Bio-Medical and Bio-Mechanical Systems; Biomedical Robots and Rehab; Bipeds and Locomotion; Control Design Methods for Adv. Powertrain Systems and Components; Control of Adv. Combustion Engines, Building Energy Systems, Mechanical Systems; Control, Monitoring, and Energy Harvesting of Vibratory Systems. Palo Alto, California, USA. October 21–23, 2013. V001T11A003. ASME. https://doi.org/10.1115/DSCC2013-3797
Download citation file:
- Ris (Zotero)
- Reference Manager
- EasyBib
- Bookends
- Mendeley
- Papers
- EndNote
- RefWorks
- BibTex
- ProCite
- Medlars
Close