In this effort, we use the generalized Polynomial Chaos theory (gPC) for the real-time state and parameter estimation of electrochemical batteries. We use an equivalent circuit battery model, comprising two states and five parameters, and formulate the online parameter estimation problem using battery current and voltage measurements. Using a combination of the conventional recursive gradient-based search algorithm and gPC framework, we propose a novel battery parameter estimation strategy capable of estimating both battery state-of-charge (SOC) and parameters related to battery health, e.g., battery charge capacity, internal resistance, and relaxation time constant. Using a combination of experimental tests and numerical simulations, we examine and demonstrate the effectiveness of the proposed battery estimation method.
- Dynamic Systems and Control Division
Battery State of Health and Charge Estimation Using Polynomial Chaos Theory
Bashash, S, & Fathy, HK. "Battery State of Health and Charge Estimation Using Polynomial Chaos Theory." Proceedings of the ASME 2013 Dynamic Systems and Control Conference. Volume 1: Aerial Vehicles; Aerospace Control; Alternative Energy; Automotive Control Systems; Battery Systems; Beams and Flexible Structures; Biologically-Inspired Control and its Applications; Bio-Medical and Bio-Mechanical Systems; Biomedical Robots and Rehab; Bipeds and Locomotion; Control Design Methods for Adv. Powertrain Systems and Components; Control of Adv. Combustion Engines, Building Energy Systems, Mechanical Systems; Control, Monitoring, and Energy Harvesting of Vibratory Systems. Palo Alto, California, USA. October 21–23, 2013. V001T05A006. ASME. https://doi.org/10.1115/DSCC2013-4088
Download citation file: