In this effort, we use the generalized Polynomial Chaos theory (gPC) for the real-time state and parameter estimation of electrochemical batteries. We use an equivalent circuit battery model, comprising two states and five parameters, and formulate the online parameter estimation problem using battery current and voltage measurements. Using a combination of the conventional recursive gradient-based search algorithm and gPC framework, we propose a novel battery parameter estimation strategy capable of estimating both battery state-of-charge (SOC) and parameters related to battery health, e.g., battery charge capacity, internal resistance, and relaxation time constant. Using a combination of experimental tests and numerical simulations, we examine and demonstrate the effectiveness of the proposed battery estimation method.

This content is only available via PDF.
You do not currently have access to this content.