With a single stochastic extremum seeking control signal, we steer multiple autonomous vehicles, modeled as nonholonomic unicycles, toward the maximum of an unknown, spatially distributed signal field. The vehicles, whose angular velocities are constant and distinct, travel at the same forward velocity, which is controlled by the stochastic extremum seeking controller. To determine the vehicles’ velocity, the controller uses measurements of the signal field at the respective vehicle positions and excitation based on filtered white noise. The positions of the vehicles are not measured. We prove local exponential convergence, both almost surely and in probability, to a small neighborhood near the source and provide a numerical example to illustrate the effectiveness of the algorithm.
- Dynamic Systems and Control Division
Stochastic Source Seeking With Multiple Nonholonomic Vehicles via a Single Forward-Velocity Control Signal
Frihauf, P, Liu, S, & Krstic, M. "Stochastic Source Seeking With Multiple Nonholonomic Vehicles via a Single Forward-Velocity Control Signal." Proceedings of the ASME 2012 5th Annual Dynamic Systems and Control Conference joint with the JSME 2012 11th Motion and Vibration Conference. Volume 3: Renewable Energy Systems; Robotics; Robust Control; Single Track Vehicle Dynamics and Control; Stochastic Models, Control and Algorithms in Robotics; Structure Dynamics and Smart Structures; Surgical Robotics; Tire and Suspension Systems Modeling; Vehicle Dynamics and Control; Vibration and Energy; Vibration Control. Fort Lauderdale, Florida, USA. October 17–19, 2012. pp. 273-279. ASME. https://doi.org/10.1115/DSCC2012-MOVIC2012-8647
Download citation file: