The SOFIE (Intelligent Assisted Bicycles) project wishes to create performance and design guidelines for mechatronic appliances which improve the stability of electric bicycles, so-called intelligent stability assist devices (IAD). To achieve this goal, a stability hypothesis, an advanced rider/bicycle model and bicycle stability test bench, will be created. This paper describes the development of these components and its goal is to present the project design. The stability hypothesis is based on the concept that the Centre of Mass (CoM) of the bicycle/rider system stays within certain lateral margins from the heading of a bicycle. The rider/bicycle model is created in Adams for multi-body dynamic simulations. The bicycle stability test bench is designed to be interchangeable between bicycles. The model, the test bench and the stability hypothesis will be used to validate the effectiveness of the IAD’s and assist in their design.
- Dynamic Systems and Control Division
Methods to Assess the Stability of a Bicycle Rider System
Cooke, A, Beusenberg, M, Bonnema, M, Poelman, W, Bulsink, V, Koopman, B, & Dubbeldam, R. "Methods to Assess the Stability of a Bicycle Rider System." Proceedings of the ASME 2012 5th Annual Dynamic Systems and Control Conference joint with the JSME 2012 11th Motion and Vibration Conference. Volume 3: Renewable Energy Systems; Robotics; Robust Control; Single Track Vehicle Dynamics and Control; Stochastic Models, Control and Algorithms in Robotics; Structure Dynamics and Smart Structures; Surgical Robotics; Tire and Suspension Systems Modeling; Vehicle Dynamics and Control; Vibration and Energy; Vibration Control. Fort Lauderdale, Florida, USA. October 17–19, 2012. pp. 189-193. ASME. https://doi.org/10.1115/DSCC2012-MOVIC2012-8524
Download citation file: