Electro-Mechanical Valve Actuators (EMVA) are a promising solution to actuate engine valves for future camless engines. Their use can increase engine power, reduce fuel consumption and pollutant emissions, and improve significantly engine efficiency. This paper is concerned with the soft landing control of a double magnet EMVA system. In particular, a force control algorithm based on a combined feedforward and feedback sliding mode control actions is presented. The aim of the control is to stabilize the system while tracking a model-based reference trajectory. It is shown by numerical simulations that the proposed control approach guarantees soft landing operation even in the presence of external force perturbations and friction force variations.
- Dynamic Systems and Control Division
Model-Based Soft Landing Control of an Electromechanical Engine Valve Actuator
di Bernardo, M, Santini, S, di Gaeta, A, Hoyos Velasco, CI, & Montanaro, U. "Model-Based Soft Landing Control of an Electromechanical Engine Valve Actuator." Proceedings of the ASME 2012 5th Annual Dynamic Systems and Control Conference joint with the JSME 2012 11th Motion and Vibration Conference. Volume 2: Legged Locomotion; Mechatronic Systems; Mechatronics; Mechatronics for Aquatic Environments; MEMS Control; Model Predictive Control; Modeling and Model-Based Control of Advanced IC Engines; Modeling and Simulation; Multi-Agent and Cooperative Systems; Musculoskeletal Dynamic Systems; Nano Systems; Nonlinear Systems; Nonlinear Systems and Control; Optimal Control; Pattern Recognition and Intelligent Systems; Power and Renewable Energy Systems; Powertrain Systems. Fort Lauderdale, Florida, USA. October 17–19, 2012. pp. 87-94. ASME. https://doi.org/10.1115/DSCC2012-MOVIC2012-8526
Download citation file: