This paper exemplifies methods to estimate sample properties, including topographical properties, from a high bandwidth estimate of tip-sample interaction forces between the probe tip and the sample surface in an atomic force microscope. The tip-sample interaction force is the most fundamental quantity that can be detected by the probe tip. The fact that sample features as well as physical properties of the sample are a function of tip-sample interaction model chosen is exploited, and the property estimates are obtained by fitting appropriate physical models to the force estimate data. The underlying idea is to treat the non-linear tip-sample interactions as a disturbance to the cantilever subsystem and design a feedback controller that ensures the cantilever deflection tracks a desired trajectory. This tracking allows scanning speeds as high as 1/10th of the cantilever resonance frequency compared to typical scanning modes that regulate derivatives of the probe deflection such as amplitude or phase, providing much lower scan speeds. The high bandwidth disturbance rejection and consequent estimation provides estimates of the tip-sample interaction force.
- Dynamic Systems and Control Division
High-Bandwidth Scanning of Sample Properties in Atomic Force Microscopy
Mohan, G, Lee, C, & Salapaka, SM. "High-Bandwidth Scanning of Sample Properties in Atomic Force Microscopy." Proceedings of the ASME 2012 5th Annual Dynamic Systems and Control Conference joint with the JSME 2012 11th Motion and Vibration Conference. Volume 2: Legged Locomotion; Mechatronic Systems; Mechatronics; Mechatronics for Aquatic Environments; MEMS Control; Model Predictive Control; Modeling and Model-Based Control of Advanced IC Engines; Modeling and Simulation; Multi-Agent and Cooperative Systems; Musculoskeletal Dynamic Systems; Nano Systems; Nonlinear Systems; Nonlinear Systems and Control; Optimal Control; Pattern Recognition and Intelligent Systems; Power and Renewable Energy Systems; Powertrain Systems. Fort Lauderdale, Florida, USA. October 17–19, 2012. pp. 561-565. ASME. https://doi.org/10.1115/DSCC2012-MOVIC2012-8757
Download citation file: