In this paper, a controller featuring cross-coupled control and iterative learning control schemes is designed and implemented on a modular two-axis positioning system in order to improve both contour and tracking accuracy. Instead of using the standard contour estimation technique proposed with the variable gain cross-coupled control, a computationally efficient contour estimation technique is incorporated with the presented control design. Moreover, implemented contour estimation technique makes the presented control scheme more suitable for arbitrary nonlinear contours. Effectiveness of the control design is verified with simulations and experiments on a two-axis positioning system. Also, simulations demonstrating the performance of the control method on a three-axis positioning system are provided. The resulting controller is shown to achieve nanometer level contouring and tracking performance. Simulation results also show its applicability to three-axis nano-positioning systems.
- Dynamic Systems and Control Division
Learning Based Cross-Coupled Control for Multi-Axis High Precision Positioning Systems
Ulu, NG, Ulu, E, & Cakmakci, M. "Learning Based Cross-Coupled Control for Multi-Axis High Precision Positioning Systems." Proceedings of the ASME 2012 5th Annual Dynamic Systems and Control Conference joint with the JSME 2012 11th Motion and Vibration Conference. Volume 2: Legged Locomotion; Mechatronic Systems; Mechatronics; Mechatronics for Aquatic Environments; MEMS Control; Model Predictive Control; Modeling and Model-Based Control of Advanced IC Engines; Modeling and Simulation; Multi-Agent and Cooperative Systems; Musculoskeletal Dynamic Systems; Nano Systems; Nonlinear Systems; Nonlinear Systems and Control; Optimal Control; Pattern Recognition and Intelligent Systems; Power and Renewable Energy Systems; Powertrain Systems. Fort Lauderdale, Florida, USA. October 17–19, 2012. pp. 535-541. ASME. https://doi.org/10.1115/DSCC2012-MOVIC2012-8660
Download citation file: