In an effort to better understand the human head-neck target tracking response, we have developed a procedure for designing a robustly optimal experimental configuration for system identification. This configuration is comprised of a parametrized input sequence along with physical parameters for the experiment. We have developed both nominal and experimental models containing uncertainties for the target tracking task based on several preliminary experimental data sets, and identified a feasible population of subject controller parameters. We applied a min-max optimization scheme to minimize a performance cost over the feasible experimental configurations, while simultaneously maximizing it over the population of subject controller parameters. In this way, a minimum level of design performance for any subject within the defined population can be guaranteed. We show that in the worst-case, the performance cost is 0.473 in flexion/extension, and 0.122 in axial rotation.
- Dynamic Systems and Control Division
Robust Optimal Experimental Design for Study of the Human Head-Neck Tracking Response
Priess, MC, Choi, J, Crayne, K, Popovich, JM, Jr., Reeves, NP, Cholewicki, J, & Radcliffe, C. "Robust Optimal Experimental Design for Study of the Human Head-Neck Tracking Response." Proceedings of the ASME 2012 5th Annual Dynamic Systems and Control Conference joint with the JSME 2012 11th Motion and Vibration Conference. Volume 2: Legged Locomotion; Mechatronic Systems; Mechatronics; Mechatronics for Aquatic Environments; MEMS Control; Model Predictive Control; Modeling and Model-Based Control of Advanced IC Engines; Modeling and Simulation; Multi-Agent and Cooperative Systems; Musculoskeletal Dynamic Systems; Nano Systems; Nonlinear Systems; Nonlinear Systems and Control; Optimal Control; Pattern Recognition and Intelligent Systems; Power and Renewable Energy Systems; Powertrain Systems. Fort Lauderdale, Florida, USA. October 17–19, 2012. pp. 503-510. ASME. https://doi.org/10.1115/DSCC2012-MOVIC2012-8595
Download citation file: