This paper presents a predictive vehicle directional stability control structure that has integrated energy-loss reduction benefits during transient handling maneuvers. The method is based on the idea of balancing longitudinal and lateral tire force saturation levels using a cascade model predictive structure for the optimal distribution of tractive or braking torques. Balancing saturation levels also has the added benefit of reducing and evening-out tire wear. To demonstrate the energy-loss reduction benefits, we consider nonlinear simulations of a nominally unstable truck featuring an independent drive system. Comparisons against a commonly cited brake-based yaw stability control strategy with similar directional control performance shows that the proposed predictive saturation management approach provides energy-loss reductions of more than 60%. This energy efficiency benefits are retained whether or not the drive system has regenerative/energy recovery capabilities.

This content is only available via PDF.
You do not currently have access to this content.