Avoiding falls require fast and appropriate step responses, which has been assessed by only stepping speed as an indicator of fall risk in older adults. We develop a new measurement system that applies a laser range finder for convenient assessment of stepping performance including temporal and spatial parameters such as reaction time, step velocity, step length, and accuracy. The measurement system for step tracking has a large advantage in terms of portability, cost, and the number of temporal and spatial parameters that we can measure. The aim of this study is to verify an efficacy of the measurement system for step tracking. We developed the system that applied a laser range finder for convenient assessment of stepping performance. In the test using a force platform and the developed measurement system simultaneously, based on reliability and validity, its effectiveness is confirmed.
- Dynamic Systems and Control Division
Development of Measurement System for Task Oriented Step Tracking Using Laser Range Finder
Takahashi, M, Matsumura, T, Moriguchi, T, Yamada, M, Uemura, K, Nishiguchi, S, & Aoyama, T. "Development of Measurement System for Task Oriented Step Tracking Using Laser Range Finder." Proceedings of the ASME 2012 5th Annual Dynamic Systems and Control Conference joint with the JSME 2012 11th Motion and Vibration Conference. Volume 1: Adaptive Control; Advanced Vehicle Propulsion Systems; Aerospace Systems; Autonomous Systems; Battery Modeling; Biochemical Systems; Control Over Networks; Control Systems Design; Cooperative and Decentralized Control; Dynamic System Modeling; Dynamical Modeling and Diagnostics in Biomedical Systems; Dynamics and Control in Medicine and Biology; Estimation and Fault Detection; Estimation and Fault Detection for Vehicle Applications; Fluid Power Systems; Human Assistive Systems and Wearable Robots; Human-in-the-Loop Systems; Intelligent Transportation Systems; Learning Control. Fort Lauderdale, Florida, USA. October 17–19, 2012. pp. 829-835. ASME. https://doi.org/10.1115/DSCC2012-MOVIC2012-8864
Download citation file: