In this paper, a general framework that provides sufficient conditions for asymptotic stabilization of underactuated nonlinear systems using an optimal sliding mode control in the presence of system uncertainties is presented. A performance objective is used to optimally select the parameters of the sliding mode control surfaces subject to state and input constraints. It is shown that the closed-loop system trajectories reach the optimal sliding surfaces in finite time and a constructive methodology to determine exponential stability of the closed-loop system on the sliding surfaces is developed which ensures asymptotic stability of the overall closed-loop system. The framework further provides the basis to determine an estimate of the domain of attraction for the closed-loop system with uncertainties. The results developed in this work are experimentally validated using a linear inverted pendulum testbed which show a good match between the actual domain of attraction of the upward equilibrium state and its analytical estimate.

This content is only available via PDF.
You do not currently have access to this content.