A robust control approach is presented in this part of the paper, which provides an effective servo control for the novel PAM actuation system presented in Part I. Control of PAM actuation systems is generally considered as a challenging topic, due primarily to the highly nonlinear nature of such system. With the introduction of new design features (variable-radius pulley and spring-return mechanism), the new PAM actuation system involves additional nonlinearities (e.g. the nonlinear relationship between the joint angle and the actuator length), which further increasing the control difficulty. To address this issue, a nonlinear model based approach is developed. The foundation of this approach is a dynamic model of the new actuation system, which covers the major nonlinear processes in the system, including the load dynamics, force generation from internal pressure, pressure dynamics, and mass flow regulation with servo valve. Based on this nonlinear model, a sliding mode control approach is developed, which provides a robust control of the joint motion in the presence of model uncertainties and disturbances. This control was implemented on an experimental setup, and the effectiveness of the controller demonstrated by sinusoidal tracking at different frequencies.

This content is only available via PDF.
You do not currently have access to this content.