Balancing is one of the most important issues of biped mechanism. In this presentation, an enhanced definition of a balanced state is proposed and the balanced state manifold for single-support legged mechanism is calculated by using constrained optimization method. The algorithm iteratively solves for the maximum and minimum velocities for a set of joint variables and actuation capacities. In addition to the system parameters, the necessary and sufficient conditions for balancing, such as the Zero-Moment Point, positive normal reaction force, friction, and final static equilibrium, are implemented as constraints. The calculated balanced state manifold can be used as general balance criteria for the single-support legged mechanism. The proposed framework can also be extended to form the balanced state manifold of systems with higher complexity.

This content is only available via PDF.
You do not currently have access to this content.