Aerial vehicles are difficult to stabilize, especially when acted upon by external forces. A hovering vehicle in contact with objects and surfaces must maintain flight stability while subject to forces imparted to the airframe through the point of contact. These forces couple with the motion of the aircraft to produce distinctly different dynamics from free flight. While external contact is generally avoided, extending aerial robot functionality to include contact with the environment during flight opens up new and useful areas such as perching, object grasping and manipulation. In this paper, we present a general elastic contact constraint model and analyze helicopter stability in the presence of those contacts. As an example, we evaluate the stability of a proof-of-concept helicopter system for manipulating objects using a compliant gripper that can be modeled as an elastic linkage with angular reaction forces. An off-the-shelf PID flight controller is used to stabilize the helicopter in free flight, as well as during the aerial manipulation task. We show that the planar dynamics of the object-helicopter system in vertical, horizontal and pitch motion around equilibrium are shown to remain stable, within a range of contact stiffnesses, under unmodified PID control.
Skip Nav Destination
ASME 2010 Dynamic Systems and Control Conference
September 12–15, 2010
Cambridge, Massachusetts, USA
Conference Sponsors:
- Dynamic Systems and Control Division
ISBN:
978-0-7918-4418-2
PROCEEDINGS PAPER
Hovering Stability of Helicopters With Elastic Constraints Available to Purchase
Paul E. I. Pounds,
Paul E. I. Pounds
Yale University, New Haven, CT
Search for other works by this author on:
Aaron Dollar
Aaron Dollar
Yale University, New Haven, CT
Search for other works by this author on:
Paul E. I. Pounds
Yale University, New Haven, CT
Aaron Dollar
Yale University, New Haven, CT
Paper No:
DSCC2010-4166, pp. 781-788; 8 pages
Published Online:
January 25, 2011
Citation
Pounds, PEI, & Dollar, A. "Hovering Stability of Helicopters With Elastic Constraints." Proceedings of the ASME 2010 Dynamic Systems and Control Conference. ASME 2010 Dynamic Systems and Control Conference, Volume 2. Cambridge, Massachusetts, USA. September 12–15, 2010. pp. 781-788. ASME. https://doi.org/10.1115/DSCC2010-4166
Download citation file:
60
Views
Related Proceedings Papers
Microraptor: A Low-Cost Autonomous Quadrotor System
IDETC-CIE2009
Related Articles
String Instabilities in Formation Flight: Limitations Due to Integral Constraints
J. Dyn. Sys., Meas., Control (December,2004)
Wrench Capability Analysis and Control Allocation of a Collaborative Multi-Drone Grasping Robot
J. Mechanisms Robotics (April,2023)
Gripper Design With Spherical Parallelogram Mechanism
J. Mech. Des (July,2009)
Related Chapters
Air and Space
Machines That Made History: Landmarks in Mechanical Engineering
Practical Applications
Robust Control: Youla Parameterization Approach
Research on Autobody Panels Developmental Technology Based on Reverse Engineering
International Conference on Advanced Computer Theory and Engineering, 5th (ICACTE 2012)