As a continuation of our study, this paper extends our research results of optimality-oriented stabilization from deterministic recurrent neural networks to stochastic recurrent neural networks, and presents a new approach to achieve optimally stochastic input-to-state stabilization in probability for stochastic recurrent neural networks driven by noise of unknown covariance. This approach is developed by using stochastic differential minimax game, Hamilton-Jacobi-Isaacs (HJI) equation, inverse optimality, and Lyapunov technique. A numerical example is given to demonstrate the effectiveness of the proposed approach.

This content is only available via PDF.
You do not currently have access to this content.