NO and NO2 are generally considered together as NOx in engine emissions. Since NO2/NOx ratio is small in diesel engine exhaust gas, very often, existence of NO2 is ignored in studies/applications. However, current diesel aftertreatment systems generally include diesel oxidation catalysts (DOCs) at upstream of other catalysts such as diesel particulate filter (DPF) and selective catalytic reduction (SCR). DOC can significantly increase the NO2 fraction in the exhaust NOx. Because NO2 and NO have completely different reaction characters within catalysts, e.g. NO2 can assist DPF regeneration while NO cannot, and SCR De-NOx rate can be increased with higher NO2/NOx ratio (no more than 0.5), considerations of NO2 in aftertreatment systems are becoming necessary. Nevertheless, current onboard NOx sensors cannot differentiate NO and NO2 from NOx. This induces an interest in the method of estimating the concentrations of NO and NO2 in the exhaust gas by available measurements. In this paper, a physically-based, DOC control-oriented model which considers the NO and NO2 related dynamics and an engine exhaust NO/NO2 prediction method were proposed for the purposes of NO/NO2 ratio estimation in diesel engine aftertreatment systems, and the developed model was validated with experimental data.

This content is only available via PDF.
You do not currently have access to this content.