The application of a pneumatic gantry robot to contour tracking is examined. A hybrid controller is structured to control the contact force and the tangential velocity, simultaneously. In a previous study, experimental contour tracking results for the robot were obtained with electronic proportional pressure control (PPC) valves. The results demonstrated the potential of pneumatic actuation for contour tracking applications. In another study it was found that improvement in performance was limited by system lag and Coulomb friction. A neural network (NN) compensator was developed to counter both effects. Simulation results demonstrated the effectiveness of the NN compensator. Although improvement in performance with NN compensation was significant, this was offset by the requirement for substantive design effort. This paper shows experimentally that equally significant improvement can be achieved by switching from PPC valves to proportional flow control (PFC) valves. The PFC approach requires less design effort.

This content is only available via PDF.
You do not currently have access to this content.