This paper presents control of a Halbach linear motor for nano-precision positioning. Using an FPGA based decoding scheme and sensor signal processing, a 0.23nm root-mean-square (RMS) sensor noise level has been obtained from a 4 micrometer period sinusoidal quadrature encoder. Disturbances to the linear motor are studied at nanometer scale. When the motor is supported by the air bearing without feedback control, the mechanical motion measured by the sensor shows substantial low frequency oscillation around 10Hz. Under a PID digital servo feedback control, the stage can be brought to a regulated state of 11.14nm RMS error at 10kHz sampling rate, otherwise not achieved by lower sampling rate. Although PID servo loop substantially reduces the 10Hz motion, a 60Hz vibration and its harmonics begin to dominate at nanometer level. It is suspected and confirmed by experiments to be due to the coupling of the DC power supply/amplifier and control computer to the AC power source. A robust repetitive control scheme is employed to reject the 60Hz disturbance and its harmonics and bring the regulated state to 1.78nm RMS value.
Skip Nav Destination
ASME 2009 Dynamic Systems and Control Conference
October 12–14, 2009
Hollywood, California, USA
Conference Sponsors:
- Dynamic Systems and Control Division
ISBN:
978-0-7918-4893-7
PROCEEDINGS PAPER
Analysis and Control of Halbach Linear Motor for Nanopositioning Available to Purchase
Yigang Wang,
Yigang Wang
University of California, Los Angeles, Los Angeles, CA
Search for other works by this author on:
Kevin C. Chu,
Kevin C. Chu
University of California, Los Angeles, Los Angeles, CA
Search for other works by this author on:
Tsu-Chin Tsao
Tsu-Chin Tsao
University of California, Los Angeles, Los Angeles, CA
Search for other works by this author on:
Yigang Wang
University of California, Los Angeles, Los Angeles, CA
Kevin C. Chu
University of California, Los Angeles, Los Angeles, CA
Tsu-Chin Tsao
University of California, Los Angeles, Los Angeles, CA
Paper No:
DSCC2009-2765, pp. 573-580; 8 pages
Published Online:
September 16, 2010
Citation
Wang, Y, Chu, KC, & Tsao, T. "Analysis and Control of Halbach Linear Motor for Nanopositioning." Proceedings of the ASME 2009 Dynamic Systems and Control Conference. ASME 2009 Dynamic Systems and Control Conference, Volume 2. Hollywood, California, USA. October 12–14, 2009. pp. 573-580. ASME. https://doi.org/10.1115/DSCC2009-2765
Download citation file:
9
Views
Related Proceedings Papers
Related Articles
Periodic, Multi-Step Tracking Control for a Weather Satellite Scanning Mirror
J. Dyn. Sys., Meas., Control (March,2001)
On-Line Diagnostics of Rear Axle Transmission Errors
J. Eng. Ind (November,1984)
Analysis, Design, and Testing of a Position Servo Utilizing a Stepper Motor
J. Basic Eng (June,1963)
Related Chapters
QP Based Encoder Feedback Control
Robot Manipulator Redundancy Resolution
Output Characteristics, Statistics, and Calculation Examples of Taguchi Methods
Taguchi Methods: Benefits, Impacts, Mathematics, Statistics and Applications
Mash 2-1 Multi-Bit Sigma-Delta Modulator for WLAN
International Conference on Future Computer and Communication, 3rd (ICFCC 2011)