This article presents preliminary stochastic estimates of the multi-variable human ankle mechanical impedance. We employed Anklebot, a rehabilitation robot for the ankle, to provide torque perturbations. Time histories of the torques in Dorsi-Plantar flexion (DP) and Inversion-Eversion (IE) directions and the associated angles of the ankle were recorded. Linear time-invariant transfer functions between the measured torques and angles were estimated for the Anklebot and when the Anklebot was worn by a human subject. The difference between these impedance functions provided an estimate of the mechanical impedance of the ankle. High coherence was observed over a frequency range up to 30 Hz, indicating that this procedure yielded an accurate measure of ankle mechanical impedance in DP and IE directions.

This content is only available via PDF.
You do not currently have access to this content.