Fluid power systems consist of components like pumps, valves and actuators and of the lines and hoses interconnecting these systems. Simple interconnections without branch points can be modelled as hydraulic two-port networks. This paper demonstrates the identification of linear state space models describing the input-output behaviour of hydraulic two-port networks in terms of pressure and flow-rate. The linear modelling approach restricts the applicability to the case of laminar flow with negligible influence of convective terms. Special attention is paid to a priori knowledge of certain model properties: The numerical optimization procedure used in the proposed identifcation method guarantees the passivity of the models and allows for instantaneous coupling of collocated pressure and flow variables according to the Joukowsky relation. The method takes experimental frequency response data as an input and generates a series of state-space approximations with increasing system order starting at order one. A hydraulic hose is presented as an example.
Skip Nav Destination
Close
Sign In or Register for Account
ASME 2009 Dynamic Systems and Control Conference
October 12–14, 2009
Hollywood, California, USA
Conference Sponsors:
- Dynamic Systems and Control Division
ISBN:
978-0-7918-4893-7
PROCEEDINGS PAPER
Identification of the Input-Output Behavior of Hydraulic Two-Port Networks
Bernhard Manhartsgruber
Bernhard Manhartsgruber
Johannes Kepler University, Linz, Austria
Search for other works by this author on:
Bernhard Manhartsgruber
Johannes Kepler University, Linz, Austria
Paper No:
DSCC2009-2669, pp. 29-35; 7 pages
Published Online:
September 16, 2010
Citation
Manhartsgruber, B. "Identification of the Input-Output Behavior of Hydraulic Two-Port Networks." Proceedings of the ASME 2009 Dynamic Systems and Control Conference. ASME 2009 Dynamic Systems and Control Conference, Volume 2. Hollywood, California, USA. October 12–14, 2009. pp. 29-35. ASME. https://doi.org/10.1115/DSCC2009-2669
Download citation file:
- Ris (Zotero)
- Reference Manager
- EasyBib
- Bookends
- Mendeley
- Papers
- EndNote
- RefWorks
- BibTex
- ProCite
- Medlars
Close
Sign In
5
Views
0
Citations
Related Proceedings Papers
Related Articles
Get to Know Fluid Power Systems
Mechanical Engineering (October,2020)
Valve-Plate Design for an Axial Piston Pump Operating at Low Displacements
J. Mech. Des (March,2003)
The Improved Volumetric-Efficiency of an Axial-Piston Pump Utilizing a Trapped-Volume Design
J. Dyn. Sys., Meas., Control (September,2001)
Related Chapters
Fluid Power Systems and Components
Metric Standards for Worldwide Manufacturing, 2007 Edition
Dynamic Behavior of Pumping Systems
Pipeline Pumping and Compression Systems: A Practical Approach
Section III: Subsections NC and ND — Class 2 and 3 Components
Companion Guide to the ASME Boiler and Pressure Vessel Code, Volume 1, Third Edition