An adaptive robust control (ARC) algorithm is developed for a class of nonlinear dynamic system with unknown input backlash, parametric uncertainties and uncertain disturbances. Due to the non-smooth dynamic nonlinear nature of backlash, existing robust adaptive control methods mainly focus on using approximate inversion of backlash by on-line parameter adaptation. But experimental results show that a linear controller alone can perform better than a controller including the selected backlash inverter with a correctly estimated or overestimated backlash gap. Unlike many existing control schemes, the backlash inverse is not constructed in this paper. A new linearly parameterized model for backlash is presented. The backlash nonlinearity is linearly parameterized globally with bounded model error. The proposed adaptive robust control law ensure that all closed-loop signals are bounded and achieves the tracking within the desired precision. Simulations results illustrate the performance of the ARC.

This content is only available via PDF.
You do not currently have access to this content.