Reported are advances made in connection with modeling of ionic polymeric metal composite (IPMC) plates undergoing large deformation under an imposed dynamic electric field. Analysis, design and prototyping of sensing or/and actuating plates made with IPMCs requires analytical models of the utilized materials and structures. This paper presents recent advances made towards the development of a computational implementation of a general theory for describing such systems in a way that allows accurate prediction of their behavior within their state space. Continuum mechanics, irreversible thermodynamics, and electrodynamics are utilized to derive the general four dimensional multi-physics field equations of materials used for artificial muscle applications. These applications are particularly important in terms of creating data sheets, thin data keyboards as well as flat speakers made with IPMC plates. The system of governing partial differential equations describing the state evolution of large deflection IPMC plates is derived. The system of these electro-hygro-thermally modified Von-Karman non-linear equations are solved numerically through an adaptive finite element approach through perspectives of geometrical and material nonlinearities. The preliminary results are presented for the case of finite deformation of an IPMC plate.
Skip Nav Destination
ASME 2009 Dynamic Systems and Control Conference
October 12–14, 2009
Hollywood, California, USA
Conference Sponsors:
- Dynamic Systems and Control Division
ISBN:
978-0-7918-4892-0
PROCEEDINGS PAPER
Modelling of Large Deflection of IPMC Plates
M. Shahinpoor
M. Shahinpoor
University of Maine, Orono, ME
Search for other works by this author on:
M. Shahinpoor
University of Maine, Orono, ME
Paper No:
DSCC2009-2609, pp. 461-468; 8 pages
Published Online:
September 16, 2010
Citation
Shahinpoor, M. "Modelling of Large Deflection of IPMC Plates." Proceedings of the ASME 2009 Dynamic Systems and Control Conference. ASME 2009 Dynamic Systems and Control Conference, Volume 1. Hollywood, California, USA. October 12–14, 2009. pp. 461-468. ASME. https://doi.org/10.1115/DSCC2009-2609
Download citation file:
10
Views
Related Proceedings Papers
Related Articles
Coupled Deformation Modes in the Large Deformation Finite Element Analysis: Generalization
J. Comput. Nonlinear Dynam (April,2009)
Theories and Applications of Plate Analysis: Classical, Numerical and Engineering Methods
Appl. Mech. Rev (November,2004)
Topology Synthesis of Compliant Mechanisms for Nonlinear Force-Deflection and Curved Path Specifications
J. Mech. Des (March,2001)
Related Chapters
Supplementary Material
Vibrations of Linear Piezostructures
Microstructure Evolution and Physics-Based Modeling
Ultrasonic Welding of Lithium-Ion Batteries
Concluding Remarks and Future Work
Ultrasonic Welding of Lithium-Ion Batteries