In order to autonomously navigate in an unknown environment, a robotic vehicle must be able to sense obstacles, determine their velocities, and follow a clear path to a goal. However, the perceived location and motion of the obstacles will be uncertain due to the limited accuracy of the robot’s sensors. Thus, it is necessary to develop a system that can avoid moving obstacles using uncertain sensor data. The method proposed here is based on a certainty occupancy grid—which has been used to avoid stationary obstacles in an uncertain environment—in conjunction with the velocity obstacle concept—which allows a robot to avoid well-known moving obstacles. The combination of these two techniques leads to velocity occupancy space: a search space which allows the robot to avoid moving obstacles and navigate efficiently to a goal using uncertain sensor data.

This content is only available via PDF.
You do not currently have access to this content.