A wind turbine generator offers a green renewable alternative to the traditional fossil and nuclear fuel processes to generate electrical power. Both wind energy technology and wind turbine farm designs remain in demand given the current growth in energy requirements and the public’s preference for clean sources. Simply put, wind energy offers a safe, relatively cost effective solution for global energy production. For example, the energy demand for populated coastal cities encourages offshore farms to fulfill future electrical needs. Similarly, wind turbines may be placed in land-locked regions and power transmitted through electric grids to population centers. Most wind models available to engineers offer superb capabilities for predicting wind velocities on land and far offshore (5 km and greater). However, near shore winds have proven difficult to determine due to surface roughness, thermal stratification, and abrupt displacement height variances. This paper discusses the model comparison of two foremost wind speed prediction tools, AWS Truewinds’ MASS and WindPro’s WAsP. The model comparison is related to measured South Carolina coastal data and suggests AWS Truewind’s MASS wind shear model is the more effective near-shore wind speed prediction tool. In arriving at these results, several areas of future work are discussed.

This content is only available via PDF.
You do not currently have access to this content.