Energy harvesters are a promising technology for capturing useful energy from the environment or a machine’s operation. In this paper we highlight ideas that might lead to energy harvesters that more efficiently harvest a portion of the considerable vibrational energy that is present for human-made devices and environments such as automobiles, trains, aircraft, watercraft, machinery, and buildings. Specifically, we consider how to exploit ideas based on properties of nonlinear oscillators with negative linear stiffness driven by periodic and stochastic inputs to design energy harvesters having large amplitude response over a broad range of ambient vibration frequencies. Such harvesters could improve upon proposed harvesters of vibrational energy based on linear mechanical principles, which only give appreciable response if the dominant ambient vibration frequency is close to the resonance frequency of the harvester.

This content is only available via PDF.
You do not currently have access to this content.