The paper presents a model-based tracking control strategy design for wheeled mobile systems (WMS). The strategy enables tracking a variety of WMS motions that come from task specifications and control or design requirements put on them. From the point of view of mechanics and derivation of equations of motion, the WMS belongs to one class of first order nonholonomic systems. From the perspective of nonlinear control theory, the WMS differ and may not be approached by the same control strategies and algorithms, e.g. some of them may be controlled at the kinematic level and the other at the dynamic level only. The strategy we propose is based on a modeling control oriented framework. It serves a unification of the WMS modeling and a subsequent controller design with no regard whether a specific WMS is fully actuated, underactuated, or constrained by the task constraints.

This content is only available via PDF.
You do not currently have access to this content.