Electroslag Remelting (ESR) is used widely throughout the specialty metals industry. The process generally consists of a regularly shaped electrode that is immersed a small amount in liquid slag at a temperature higher than the melting temperature of the electrode. Melting droplets from the electrode fall through the lower density slag into a liquid pool constrained by a crucible and solidify into an ingot. High quality ingots require that electrode melt rate and immersion depth be controlled. This can be difficult when process conditions are such that the temperature distribution in the electrode is not at steady state. A new method of ESR control has been developed that incorporates an accurate, reduced-order melting model to continually estimate the temperature distribution in the electrode. The ESR process is highly nonlinear, noisy, and has coupled dynamics. An extended Kalman filter and an unscented Kalman filter were chosen as possible estimators and compared in the controller design. During the highly transient periods in melting, the unscented Kalman filter showed superior performance for estimating and controlling the system.

This content is only available via PDF.
You do not currently have access to this content.