Bilateral teleoperation across significant time delays has been extensively studied and is posed to provide remote control of orbiting robots. Unfortunately, most standard approaches assume an impedance controlled, backdrivable robot. In this work, we apply wave variable control to Ranger, a large, space-qualified, geared robot. We incorporate local feedback of contact forces into the control framework to achieve backdrivable operation. In particular, this control framework imitates an idealized point mass to respect Ranger’s dynamic capabilities. Beyond perceiving steady state contact forces, the user’s perception can be enhanced with high-frequency acceleration feedback of contact transients. Experimental results from controlling Ranger using network communications show stable operation in free space and contact.

This content is only available via PDF.
You do not currently have access to this content.