This paper investigates the tradeoffs between design variables important for the development of a mobility support soft exoskeleton for horizontal shoulder adduction. The soft exoskeleton utilizes discreet shape memory alloy (SMA) spring actuators to generate the required torque to move the arm segment, while preserving the qualities of a soft, wearable garment solution. A pilot benchtop test involving varying power input, actuator anchor position, actuator orientation, and added weight, was investigated to evaluate their effects against the degree of motion the soft exoskeleton allows. The results show that the power input, actuator anchor position, and simulated limb weight each affect the ultimate horizontal adduction angle the exoskeleton is able to induce. Further, the project highlights a crucial point in regard to the tradeoffs between functionality and wearability: when actuator orientation was investigated, we found a decrement in functionality (as measured by maximum achievable horizontal adduction angle) when the actuators were constrained close to the body. This shows that when aiming to improve the hypothetical system’s wearability/usability, the effective torque that can be generated is reduced. Together these findings demonstrate important design considerations while developing a wearable, soft exoskeleton system that is capable of effectively supporting movement of the body while maintaining the comfort and discreetness of a regular garment.
Skip Nav Destination
2019 Design of Medical Devices Conference
April 15–18, 2019
Minneapolis, Minnesota, USA
ISBN:
978-0-7918-4103-7
PROCEEDINGS PAPER
Design Tradeoffs in the Development of a Wearable Soft Exoskeleton for Upper Limb Mobility Disorders
Esther Foo,
Esther Foo
University of Minnesota - Twin Cities, St. Paul, MN
Search for other works by this author on:
Heidi Woelfle,
Heidi Woelfle
University of Minnesota - Twin Cities, St. Paul, MN
Search for other works by this author on:
Brad Holschuh
Brad Holschuh
University of Minnesota - Twin Cities, St. Paul, MN
Search for other works by this author on:
Esther Foo
University of Minnesota - Twin Cities, St. Paul, MN
Heidi Woelfle
University of Minnesota - Twin Cities, St. Paul, MN
Brad Holschuh
University of Minnesota - Twin Cities, St. Paul, MN
Paper No:
DMD2019-3285, V001T09A013; 6 pages
Published Online:
July 19, 2019
Citation
Foo, E, Woelfle, H, & Holschuh, B. "Design Tradeoffs in the Development of a Wearable Soft Exoskeleton for Upper Limb Mobility Disorders." Proceedings of the 2019 Design of Medical Devices Conference. 2019 Design of Medical Devices Conference. Minneapolis, Minnesota, USA. April 15–18, 2019. V001T09A013. ASME. https://doi.org/10.1115/DMD2019-3285
Download citation file:
628
Views
Related Proceedings Papers
Related Articles
Series Elastic Actuators for Small-Scale Robotic Applications
J. Mechanisms Robotics (June,2017)
An Innovative Design of Artificial Knee Joint Actuator With Energy Recovery Capabilities
J. Mechanisms Robotics (February,2016)
Development and Validation of Robotic Ankle Exoskeleton With Parallel Nonlinear Elastic Actuator
J. Mech. Des (November,2024)
Related Chapters
A Novel Clustering Approach for Manets Based on Mobility
International Conference on Computer and Computer Intelligence (ICCCI 2011)
QP Based Encoder Feedback Control
Robot Manipulator Redundancy Resolution
Calculation and Experimental Analysis of Forces and Stresses in Intramedullary Nail Models
Intramedullary Rods: Clinical Performance and Related Laboratory Testing