Needle-based surgical procedures for diagnostic and therapeutic purposes such as biopsy and brachytherapy has significantly contributed in minimally invasive surgeries. Percutaneous interventions demand precise navigation of surgical needles in soft tissue. Active needle steering increases the target placement accuracy, and consequently improves the clinical outcome. In this work, a novel 3D steerable active surgical needle with three Shape Memory Alloy (SMA) actuators is proposed. The actuation capabilities of SMAs were used to realize a 3D motion at the needle tip. The feasibility of 3D steerability was demonstrated through active control of multiple SMA actuators.

This content is only available via PDF.