Cartilage plays an important role in reducing mechanical stress and assist with smooth limb movement. Osteoarthritis is the degeneration of articular cartilage and bone. This osteochondral region is difficult to heal because of its dissimilar healing capability, so osteochondral transplantation is the most common method to resolve this issue. Post-traumatic osteoarthritis develops after a joint injury and can damage the cartilage and accelerate its wear and tear. Mosaicplasty is the most widely used method involving transplantation of small cylindrical bone cartilage plugs to fill up the affected region. The success of harvesting a larger and complex shaped graft to replace the damaged osteochondral area lies in effective extraction of the cartilage-bone graft from the donor site. Currently, no method exists to perform this procedure for autologous transplantation due to the complexity involved to extract graft without damaging the donor site. In this paper, we propose a novel graft removal mechanism to harvest a personalized autologous graft of virtually any shape and size. Our method involves drilling a profile similar to the effected region on the donor site and slicing off the desired cartilage-bone graft from its root to harvest it. We developed a new graft removal mechanism capable of inserting a flexible saw parallel to the transverse plane and slice the graft parallel to the coronal plane to extract a donor graft for autografting procedures.

This content is only available via PDF.