The degree to which deep brain stimulation (DBS) therapy can effectively treat various brain disorders depends on how well one can selectively stimulate one or more axonal pathways within the brain. There is rapidly growing clinical interest in DBS lead implant designs with electrode arrangements that can better target axonal pathways of interest, especially in cases where the optimal target is immediately adjacent to a pathway that when stimulated will elicit adverse side effects. Numerical modeling has demonstrated that DBS leads with four radially segmented electrodes provide the best balance of directional targeting capability while minimizing the overall number of electrode contacts [1]. Here, we present a novel 4×4 DBS lead (16-channel electrode array) with the same form factor and materials as current 4 or 8-channel FDA-approved DBS leads. Electrode impedance spectroscopy was performed for three of these 4×4 DBS leads showing reliable electrode impedances before and after implantation within the brain.

This content is only available via PDF.