Congestive heart failure (CHF) remains one of the most costly diseases in the industrialized world, both in terms of healthcare dollars and the loss of human life. Despite great strides made in the treatment of CHF using mechanical ventricular assist devices (VADs), several longstanding difficulties associated with pumping blood continue to limit their long-term use. Among the most troublesome have been the increased risk of infection associated with the use of percutaneous drivelines and the persistent risk of clot formation at the blood-device interface. Development of a completely self-contained, non-blood-contacting VAD for long-term use would therefore be an important advance in circulatory support technology. Toward that end, we have developed a muscle-powered co-pulsation VAD (Figure 1) that avoids both these problems by using an internal muscle energy converter (MEC) to drive a non-blood-contacting direct cardiac compression sleeve (DCCS) for long-term circulatory support.

This content is only available via PDF.