Natural orifice transluminal endoscopic surgery (NOTES) is a method in which tools are passed through a natural orifice to the surgical site. This removes the need for external incisions, which can allow patients to recover more quickly without any visible abdominal scarring. This surgical method also has several limitations including limited space, complex lumen geography, and difficult visualization [1]. To address these problems, researchers have developed various tools, including endoscope-based robots [2], and insertable bimanual robots [3]. However, some of the aforementioned constraints/limitations remain, and consideration of accessories for use with these tools remains relevant.

Our lab designed a multifunctional NOTES robot, which consists of a snakelike linkage driven by cables that are attached to motors in an external housing to navigate through the lumen geometry; it also includes a bimanual end effector with interchangeable tool tips [4]. This paper introduces the design of an adjustable table mount to address the limitations related to transluminal insertion. It provides four passive degrees of freedom (DOFs) to grossly place the robot, and enables the robot to be fixed on surgical tables with different sizes. Benchtop testing on a surgical table with a patient mannequin demonstrates its functionality.

This content is only available via PDF.